
Center for !hrbulence Rereamh 
Proadingo of the Summer Prognam 1988 

57 

Subharmonic Resonance in a Mixing Layer 

By N. N. Mansour l ,  F. Hussain *, and J. C. Buelll 

The subharmonic resonance phenomenon in a spatially-evolving mixing layer is 
studied using direct simulations of the two-dimensional Navier-Stokes equations. 
The computational domain extends to f o o  in the cross-stream direction with U1 = 
1.25 and Uz = 0.25 imposed at +oo and -oo respectively. The domain is finite 
in the streamwise direction with inflow and outflow boundary conditions imposed 
at z/6, = 0 and z/6, = 100, respectively. A hyperbolic-tangent mean velocity 
profile is assumed at the inlet and the Reynolds number based on the inlet vorticity 
thickness and velocity difference is Re = 600. It is observed that the phase angle 
between the fundamental and its subharmonic plays a key role in the spatial de- 
velopment of these modes. Contour plots of vorticity show that varying the phase 
will have a dramatic effect on the dynamics of the vortices. Pairing or shredding is 
observed depending on the phase. Fourier decomposition of the time traces show 
that the fundamental grows, saturates and decays with the downstream distance. 
The subharmonic has a similar behavior. However, the level at which the modes 
will saturate is affected by the phase. At 0" phase, we find that as the fundamental 
saturates, the growth rate of the subharmonic is enhanced. At 90" phase, we find 
that as the fundamental saturates, the growth rate of the subharmonic is inhibited. 
In the later case, the growth rate of the subharmonic recovers after saturation of the 
fundamental. These results are in qualitative agreement with experimental data. 

1. Introduction 
While the occurrence of large-scale, vortical coherent structures (CS) in turbulent 

shear flows is not in question, what role they play, how this role is affected by the 
interaction of these CS and how this role can be enhanced or suppressed through 
manipulation of CS are still open questions. The initiation, growth, interaction, 
breakdown and regeneration of coherent structures are manifestations of a hierarchy 
of instability mechanisms in both transitional and turbulent flows. In a turbulent 
flow the interaction of coherent structures is complex and three-dimensional. The 
interaction of 2D coherent structures in a mixing layer should be addressed first as 
the simpler case. Following the 2D roll-up of an initially laminar layer into discrete 
structures, the most common, and dynamically significant, event observed is the 
growth of the subharmonic which manifests itself as pairings. The pairing process, 
Le., the growth of the subharmonic, is a consequence of what has come to be known 
as subharmonic resonance - a simple consequence of nonlinear interaction between a 
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wave of angular-frequency w and its subharmonic wave (of angular-frequency w / 2 ) .  
Under suitable conditions (say proper choices of relative phase and amplitudes of w 
and w / 2  components) the fundamental component that results from nonlinear in- 
teraction can reinforce the subharmonic. The resulting growth of the subharmonic, 
causing merger of the vortices, is one of the most striking features of turbulent 
shear flows because it provides a direct mechanism for large-scale mixing and other 
phenomena such as aerodynamic noise. 

The subharmonic resonance mechanism was first analyzed by Kelly (1967) using 
a weakly nonlinear temporal formulation for a parallel flow. He showed that the 
mean together with a fundamental wave component can reinforce the growth of the 
subharmonic of that fundamental. Monkewitz (1988) extended Kelly’s analysis to 
spatially evolving mixing layers and addressed some interesting features: effect of 
the phase angle between the fundamental and subharmonic, the critical fundamen- 
tal amplitude required for resonance and the effect of detuning. The phenomenon 
has been studied numerically by Patnaik et al. (1976) and Riley & Metcalfe (1980) 
for the time-developing mixing layer. In this work the spatial mixing layer is inves- 
tigated. 

The computational scheme uses high-order approximations to the two-dimen- 
sional Navier-Stokes equations. A spatially evolving mixing layer is studied by 
forcing the inlet flow with the eigenfunction solutions to the Rayleigh equation at 
the desired frequencies. The boundary conditions used are described in section 
2. Vorticity contours, time spectra and the spatial development of the modes are 
discussed in section 3. 

2. T h e  computational parameters 
The numerical scheme approximates the Navier-Stokes equations by using a spec- 

tral method in the vertical direction, high-order Pad6 finite differencing in the 
streamwise direction and third-order Runge-Kutta in time. The mean inlet stream- 
wise velocity is forced to be a tanh profile, 

I 

where T = UI/U2 is the velocity ratio of the low-speed side over the high-speed 
side. All lengths are nondimensionalized with the vorticity thickness, 6,, of the 
inlet mean flow, all velocities are nondimensionalized with the velocity difference, 
AU = Ul - Uz. To correspond with the experiment of Husain & Hussain (1986) we 
want T = 0; however, computationally the exit boundary conditions for this case 
are harder to prescribe. At the exit the structures are assumed to convect out of 
the domain at a constant convection speed (c), 

for both the streamwise and cross-stream velocity. If the velocity at the low speed 
side is too low there will be intermittent backflow at the exit boundary which 
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Table 1. Summary of computed cases 

will violate our “convection out of the domain” assumption. We chose T = 0.2. 
Proper prescription of the exit boundary condition is still an unsolved problem. 
Buell & Huerre (this proceeding) found that the exit boundary condition causes 
global potential fluctuations which interact with the inflow boundary and create 
small-amplitude noise at the inlet. In our study we will force the inlet flow at one 
frequency and its subharmonic. The amplitude of the forcing (0.005 of the velocity 
difference) is much larger than the feedback amplitude. It is found that the growth 
rate of the forced frequency is not affected by the boundary feedback problem. 

The boundary condition at foo is imposed so that the streamwise velocity is 
constant and equal to UI = 1.25 and U2 = 0.25 at +oo and -oo respectively. The 
cross stream velocity can be defined arbitrarily at these boundaries. Numerical 
experimentation with r = 0.2 suggest the values VI = -0.002 and V2 = 0.005 at 
+oo and -oo respectively. These entrainment velocities were selected to minimize 
the streamwise pressure gradient. Numerical experimentation with these boundary 
conditions show that the level of the cross-stream velocity will not affect the vorticity 
thickness of the layer but has a direct effect on the momentum thickness. 

The inlet profile is forced as follows: 

where w is a fundamental frequency, 45, ijf, ..., are the eigenfunctions of the Rayleigh 
equation corresponding to the forced frequencies, and 4 is the phase difference 
between the fundamental and its subharmonic. a1 and a 2  are arbitrary constants 
that were set equal to a1 = a2 = 0.005. 

3. Basic measured quantities 
Numerical integration of the Rayleigh equation show that the most unstable an- 

gular frequency is about w = 0.65 for the mean profile given by Eq. (1). We will 
choose this frequency as our fundamental frequency. The objective of this work is 
to study the effect of the phase difference between the fundamental and its sub- 
harmonic on the development of the layer. We know that mixing layers develop by 
the interaction of vortices and that the layer grows by the amalgamation of these 
vortices. 

3.1 Vorticity Contours 
Figures la-d show characteristic vorticity contours after the layer has developed 

for the four cases that are summarized in Table 1. Case 1 corresponds to forcing 
the fundamental without forcing the subharmonic. Case 2 corresponds to the case 
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FIGURE 1. Contour plots of vorticity. a) Case 1, forcing the fundamental only. b) 
Case 2, forcing the subharmonic only. c) Case 3, forcing the fundamental and its 
subharmonic with q5 = 0". d) Case 4, forcing the fundamental and its subharmonic 

I 

I with 4 = 90". 

I where only the subharmonic is forced. In case 3 both the fundamental and the 
subharmonic are forced with 4 = 0" phase difference between them. In case 4 the 
fundamental and subharmonic are forced with q5 = 90" phase difference between 
them. One can notice that in all cases the layer breaks into vortices corresponding 

I 
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FIGURE 2. Time spectra at z = 28.1 and y = 0. a) Case 1, forcing the fundamental 
only. b) Case 2, forcing the subharmonic only. c) Case 3, forcing the fundamental 
and its subharmonic with 4 = 0". d) Case 4, forcing the fundamental and its 
subharmonic with 4 = 90". 

to the forced frequency. The growth of the 
subharmonic (pairing of the forced frequency) that occurs in case 1 is due to the 
effect of the downstream boundary condition on the layer. In our reference frame 
the mixing layer should be convectively unstable, therefore, no subharmonic can be 
generated unless it is forced from the upstream. Because the inlet for cases 1 and 2 
is forced at one frequency only, the appearance of the subharmonic as detected by 
the pairing can only come from the effect of the downstream boundary condition 
on the upstream. Comparing the four cases, we find that the earliest pairing occurs 
in case 3 where the subharmonic was forced with 4 = 0". 

The layer is thicker (at 2 = 40) for this case as compared to the other cases. 
By changing the phase to 90" the location of the pairing is shifted downstream. 
Comparing the case o f 4  = 90" phase difference (Figure Id) with the case of forcing 
only the fundamental (Figure la), we find that the two layers are similar. This is 
an indication that the subharmonic is being inhibited for t$ = 90". The suppression 
is not complete since pairing in case 4 still occurs earlier than in case 1. 

These vortices subsequently pair. 
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Vorticity contours yield a qualitative picture on the development of the layer. A 
series of contour plots as a sequence in time or a movie will yield a better picture 
of the dynamics of the layer, but the information they will yield is still qualitative. 

3.2 Time spectra 
An effective tool for the study of unsteady data is to analyze the time signal using 

Fourier transforms in time. Given the time trace of the velocity component at a 
location in space, the signal is windowed, and then expanded in a Fourier series in 
time, 

v = C~(w)exp( iwt )  
w 

The spectrum of the velocity is defined as, 

E&) = C(w)C'(w). 

Figures 2a and 2b show the spectra of the v-velocity component at t = 28.1, 
and y = 0 for the four cases. We can see clearly that modes other than the forced 
modes and their harmonics have developed. The development of a broad spectrum 
is due to the interaction of the downstream boundary condition with the inlet flow. 
This interaction is forcing a background noise which is unavoidable in experiments. 
Since we are forcing a given frequency and are interested in the early development 
of the layer, we expect that the effect of the downstream boundary condition on 
our results and conclusion should be small. This is supported by the fact that the 
forced frequencies and their harmonics are still the dominant frequencies at t < 30. 
Comparison of Figures 2c and 2d show that the subharmonic is much larger for 
case 3 as compared to case 2. This is an indication that the growth rate of the 
subharmonic is larger for 4 = 0". Comparing the amplitude of the fundamental 
for the three cases (1, 3 and 4), we find that the magnitude of the fundamental 
is comparable for cases 1 and 4; for case 3, the growth of the subharmonic has 
inhibited the fundamental. In case 2, the fundamental is a harmonic of the forced 
frequency and is expected to be lower than the forced cases. To properly compare 
the growth rate of the different modes we need to examine the development of the 
modes in space. 

3.3 Contour plots of Fourier modes. 
In our discussion on the development of the layer (53.1) we implicitly decomposed 

the flow field into its Fourier components. In the present study we are interested in 
the spatial distribution of the forced modes. Figures 3 and 4 show contour plots of 
Iiif/2 1 and JCf/2 I for cases 3 and 4. From these figures we find that liif/2 I will grow 
in the downstream direction and develop a double peak. Contour plots of I C f p  I (see 
Figure 3) show that in the early stages ( i j f /2[  has one peak close to the centerline. 
The effect of the phase difference is manifested by the shift in the downstream 
direction of the peak. For case 3, the subharmonic saturates at around t = 40, 
while for case 4 the peak occurs at around t = 50. Comparing the contour plots 
for the two cases, we find general similarities. Both I i i f / 2  I contours exhibit a region 
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FIGURE 3. Contour plots of IGf/21. a) Case 3, forcing the fundamental and its 
subharmonic with q5 = 0". b) Case 4, forcing the fundamental and its subharmonic 
with 4 = 90". 

with double peaks, then a region of decay, followed again by a region with double 
peaks. Quantifying the IGf12( by plots of the intensity at one y location will not 
yield a proper norm since this component vanes rapidly across the layer. 

In general, the 151 component is simpler to quantify . Contour plots of 161 show 
a peak around y = 0 for both cases. The two plots are similar; however, shifting 
the coordinate so that the peaks will coincide shows that the distribution of the 
modes in space is different. The distance between contour levels in case 3 is shorter, 
indicating that the subharmonic is growing at a faster rate. 

3.4 Growth of the fundamental and Subharmonic 
While contour plots show the distribution of the mode in space, it is not simple 

to compare the data for the different cases. For simplicity, we assume that a proper 
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FIGURE 4. Contour plots of Iijf/ll. a) Case 3, forcing the fundamental and its 
subharmonic with t,6 = 0". b) Case 4, forcing the fundamental and its subharmonic 

i with t,6 = 90". 

norm for the distribution is well represented by the development of 
and study the development of the fundamental and subharmonic along that line. 

3.4.1 Eflect of the Reynolds number. 
At the early stages of the development of the modes and at high Reynolds numbers 

we expect linear theory to be a good approximation. At low Reynolds numbers the 
viscous growth of the layer will be important and will affect the growth rate of the 

along y = 0, 

I 

I 
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FIGURE 5. Effect of the Reynolds number on the development of the fundamental. 
l'cfl with Re = 600. ---- I.Gfl with Re = 300. - . - - - - - -  I'cf/21 with Re = 600. 

modes. Figures 5 and 6 compare the development of 'cf at Re = 300 and Re = 600 
for cases 1 and 2 where only the fundamental and only the subharmonic is forced. 
We find that the effect of the Reynolds number is to reduce the growth rate in 
the downstream direction. This effect is less severe for the subharmonic mode. 
In addition, exponential growth is valid for significantly larger amplitudes of the 
subharmonic mode as compared to the fundamental mode. Note that in the case of 
forcing at only the fundamental, the subharmonic will develop because of feedback 
from the downstream boundary condition. 

3.4.2 Effect of the phase difference on [.GI. 
The development of the magnitude of the fundamental and its subharmonic with 

the downstream distance is shown in Figures 7a and 7b for 4 = 0" and 4 = 90" 
respectively. We find that the growth rate of the fundamental is only slightly affected 
by the presence of the subharmonic. However, the saturation level is higher for 
4 = 90" as compared to I$ = 0". This is an indication that there is an interaction 
between the fundamental and its subharmonic. On the other hand the level at 
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FIGURE 6. 
- lijf/2[ with Re = 600. ---- lGf/21 with Re = 300. 

Effect of the Reynolds number on the development of the subharmonic. 

which the subharmonic saturates seems independent of the phase angle. But the 
location of the peak is dramatically affected by the phase angle. Comparison of 
the growth rate of the subharmonic with linear theory and case 2 (forcing only the 
subharmonic) shows that with q5 = 0" the subharmonic grows faster than predicted 
by linear theory. On the other hand for q5 = 90" its growth rate is suppressed as 
the fundamental saturates. After saturation the subharmonic recovers and starts 
growing. This is a clear indication that the phase between the fundamental and 
the subharmonic plays a critical role on the development of the layer. In agreement 
with Monkewitz's analysis we find that the amplitude of the fundamental has to 
reach a critical level before it can modify the growth rate of the subharmonic. 

3.4.3 Effect of the phase difference on 161. 

The effect of the phase difference on 161 is more dramatic that the effect on 161. 
Figures 8a and b show the development of liifl and 16f/2( with the downstream 
direction at y = 0. We find that at = go", Iiifpl actually decreases as the 
fundamental saturates. After saturation the subharmonic grows at a faster rate than 
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FIGURE 7. Development of lCfl and ICf/2l in the downstream direction at y = 0. 
a) Case 3, forcing the fundamental and its subharmonic with 4 = 0". b) Case 4, 
forcing the fundamental and its subharmonic with 4 = 90". - ICf 1. ........ 
13f/21. 

expected from linear theory. These observations are in qualitative agreement with 
the experimental measurements of Husain & Hussain (1986), but give a different 
pictures than Figure 7 on the development of the modes after saturation of the 
fundamental. This is an indication that results based on one component of the 
velocity should be interpreted with caution. 

4. Future extensions 
We have studied the effect of the phase angle between a fundamental and its sub- 

harmonic for one frequency, namely the most unstable frequency as predicted from 
linear theory. Two phases 90" apart were considered. In future work, the phase 
range 0" 5 4 5 180" will be investigated. Early results indicate that the maximum 
suppression occurs at 4 = 97". Also, in agreement with experimental observation, 
the maximum suppression occurs in a narrow phase range. This is an indication 
that suppression of mixing may be difficult to achieve in practical applications. 
Simulations at various frequencies will also be carried out to investigate the effect 
of Strouhal number on the phase difference between maximum enhancement and 
suppression. Finally, evaluation of different nonlinear theories on subharmonic res- 
onance will be carried out by comparing the numerical results with the theoretical 
predictions and by evaluating the assumptions made by the theories. 
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FIGURE 8. Development of IJfl and IJf/21 in the downstream direction at y = 0. 
a) Case 3, forcing the fundamental and its subharmonic with 4 = 0". b) Case 4, 
forcing the fundamental and its subharmonic with 4 = 90". - lGfl* ........ 
lJ f /2 I-  
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